Stochastic Optimal Timber Harvest Problem and the Value of Carbon Sequestration: A Real Options Analysis

Stanislav Petrasek¹ John Perez-Garcia² Bruce Bare²

¹Hancock Timber Resource Group Boston, USA

²School of Forest Resources University of Washington, Seattle, USA

14th Symposium for Systems Analysis in Forest Resources March 8-11, 2011 Maitencillo, Chile

(日) (日) (日) (日) (日) (日) (日)

1 Introduction to Real Options in Forestry

- Motivation
- Basics

2 Stochastic Optimal Harvest Problem

(日)

- Problem Overview
- Results Presentation

Introduction to Real Options in Forestry

L Motivation

Price Risk in Forest Management

- Traditional net present value methods ignore risk
- Stochastic price fluctuations pose significant risk to forest owners
- Ignoring risk leads to inaccurate valuation and sub-optimal management
- Real options provide a practical approach to risk analysis and management
- Real option analysis of the stochastic optimal timber harvest problem will be presented

Introduction to Real Options in Forestry

L Motivation

Real American Call Option

- An option is a right to buy/sell an asset at a fixed price
- Call property implies the right to buy
- American property allows exercising any time
- In forestry, timber is a real (physical) asset

Basic Premise

- Timber ownership is the right to buy timber for harvest cost and sell it on the open market at prevailing price
- This formulation leads to a real American call option on the value of timber

Introduction to Real Options in Forestry

Basics

Problem Formulation

Real options are alterations of the basic stochastic optimal stopping problem

$$\pi(S_0) = \sup_{\tau^* \in \mathbb{R}^+} \mathbb{E}[d_0^{\tau^*} Q_{\tau^*} (S_{\tau^*} - C)^+ | S_0]$$
(1)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\pi(S_0)$ = expected discounted value of optimal harvest
- S_0 = starting timber price
- τ^* = optimal harvest time
- $d_0^{\tau^*}$ = discount factor
- Q_t = yield function
- S $_{\tau^*}$ = stochastic price of timber per unit volume
- C = harvest cost per unit volume

Introduction to Real Options in Forestry

Basics

American Option Valuation

- Early exercise possibility (finding τ^*) greatly complicates American option valuation
- Closed-form solutions of American option valuation problems limited to cases inapplicable in forestry
- Valuation of American options is an area of active research
- Solutions approximated by the use of numerical methods:
 - Finite Differences: Fast, moderately flexible, difficult
 Trees: Fast, easy to implement, not very flexible
 Monte Carlo Methods: Very flexible, easy, not very fast
- A Monte Carlo algorithm was applied to the stochastic optimal harvest problem

Introduction to Real Options in Forestry

Basics

Stochastic Price Model

- Many models for price behavior are available
- Choice is driven by available historical data and economic theory
- Logarithmic mean-reverting process was used to model timber and CO₂ prices

$$dS_t = \kappa(\mu - \ln S_t) S_t dt + \sigma S_t dW_t$$
(2)

- S_t = asset price
- κ = rate of mean reversion
- $\mu = \log of \log term price$
- σ = price volatility
- *d*W_t is increment of the Wiener process

Stochastic Optimal Harvest Problem

Problem Overview

Stochastic Optimal Harvest Problem

Motivation

Properties:

- Classical Faustmann Problem: Choose rotation length to maximize bare land value over multiple harvest cycles subject to silvicultural and economic constraints
- Modification: Introduce risk via stochastic prices of timber and CO₂

Objectives:

- Bare land value with stochastic timber and CO₂ prices
- Optimal harvest strategy in stochastic settings
- Impact of carbon sequestration on optimal harvest age

Problem Overview

Stochastic Faustmann Problem as Real Option

IF Land ownership is viewed as the right to exchange timber for harvest cost and sell it in the market at prevailing price

THEN Valuation of forest land under price risk parallels the valuation of a multi-period American call option

American Call	Bare Land Value
Underlying Assets	Timber and Carbon
Exercise Time	Harvest Time
Strike Price	Harvest Cost
Contract Length	Planning Horizon

Stochastic Optimal Harvest Problem

Problem Overview

Solution Algorithm

- Monte Carlo algorithm was used for its flexibility
- Based on method introduced by Ibáñez and Zapatero
- Extended to calculate value of multiple rotations
- Modified to solve problems with realistic CO₂ scenarios

Two-part solution:

- Expected bare land value
- Optimal harvest policy as function of prices and age
- Recall Equation 1:

$$\pi(S_0) = \sup_{\tau^* \in \mathbb{R}^+} \mathbb{E}[d_0^{\tau^*} Q_{\tau^*} (S_{\tau^*} - C)^+ | S_0]$$
(1)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Stochastic Optimal Harvest Problem

Problem Overview

Solution Algorithm

Time

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stochastic Optimal Harvest Problem

Problem Overview

Carbon Treatment

Three basic carbon pools are considered in this study:

- Forest Pool: All carbon contained in a standing forest
- Product Pool: All carbon contained in harvested wood products
- Substitution Pool: All carbon not released into the atmosphere when harvested wood products displace fossil-based alternatives (Avoided emissions)

Stochastic Optimal Harvest Problem

Problem Overview

Cash Flows

Decision at time *t*:

$$\pi_{t} = \max\left[CF_{C}^{t} + \mathbb{E}(d_{t}^{t+1} \pi_{t+1}^{NH}); CF_{T}^{t} + \mathbb{E}(d_{t}^{t+1} \pi_{t+1}^{H}) \right] \quad (3)$$

Cash flow if harvest does not occur at time t:

$$CF_C^t = \gamma \,\Delta \,\mathsf{Q}_t \,\mathsf{P}_C^t \tag{4}$$

Cash flow if harvest does occur at time t:

$$CF_{T}^{t} = Q_{t} \left[P_{T}^{t} - \gamma \left(\alpha_{F} - \alpha_{P} - \alpha_{S} \right) P_{C}^{t} - C \right]$$
(5)

Where Q_t = yield; P_T^t = timber price; P_C^t = CO₂ price; C = harvest cost; α_F , α_P , α_S are carbon fractions in forest, product and substitution pools; and γ converts carbon in wood to atmospheric CO₂

Stochastic Optimal Harvest Problem

Problem Overview

Carbon Scenarios

Scenarios constructed from three sets of values of α_i in Equation 5:

$$CF_{T}^{t} = Q_{t} \left[P_{T}^{t} - \gamma \left(\alpha_{F} - \alpha_{P} - \alpha_{S} \right) P_{C}^{t} - C \right]$$
(5)

Scenario	α_{F}	α_{P}	$\alpha_{\mathbf{S}}$
No. 1	0.80	0.2	0.2
No. 2	0.80	0.25	1.0
No. 3	0.80	0.35	2.0

No. 1: $\alpha_F > \alpha_P + \alpha_S \Rightarrow$ Increased harvest cost due to CO₂

- No. 2: $\alpha_F < \alpha_P + \alpha_S \Rightarrow$ Moderate CO₂ harvest revenue
- No. 3: $\alpha_F \ll \alpha_P + \alpha_S \Rightarrow$ High CO₂ harvest revenue

Problem Overview

Parameter Values – Optimal Harvest Problem

Parameter	Timber	Carbon	
Initial Price P ⁰	400 (\$/MBF)	25 (\$/ton)	
Long-term Price	665 (\$/MBF)	33 (\$/ton)	
Reversion Rate κ	0.33 (%/year)	4.0 (%/year)	
Volatility σ	0.25 (%/year)	0.5 (%/year)	
Correlation ρ	10 (%)		
Harvest Cost C	100 (\$/MBF)		
Discount Rate r	5 (%/year)		
Simulation Horizon T	100 (years)		
Harvest Time	Anytime before T (year)		
Yield Function	High-yield site in Western Washington		
Silviculture	Douglas fir regime with planting followed		
	by a clear cut har	vest	

Bare Land Value & Long Term Timber Price

Bare Land Values as Function of Long-Term Timber Price

Long Term Timber Price (\$/MBF)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - ∽��?

Decision Boundaries - Carbon

Optimal Harvest Boundaries for Ages 30-60 Years - Scenario 2

Timber Price - Fixed (\$/MBF)

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへの

Decision Boundaries - Timber

Optimal Harvest Boundaries for Ages 30–60 Years – Scenario 2 Stand Age Held Fixed Along Each Curve

CO2 Price - Fixed (\$/ton)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Harvest Age Frequency: Scenarios 1 - 3

Harvest Age Frequency for Carbon Scenarios 1 – 3

Stand Age (Years)

Harvest Time Frequency & CO₂ Price Sensitivity

Stand Age (Years)

▲ロト ▲園ト ▲目ト ▲目ト 三目 - のへの

Harvest Time Frequency & Timber Price Sensitivity

Harvest Times Distribution for 17 Values of Long–Term Timber Price Scenario 2

Stand Age (Years)

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへの

Harvest Time Frequency & Timber Price Volatility

Stand Age (Years)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○○○

Harvest Cycle Contribution

Convergence in Number of Harvest Cycles Scenario 2

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへで

Summary

Summary

- Stochastic price fluctuations are a significant source of risk in forest management
- Real options methodology provides a practical approach to valuation and optimal management of forestry assets in the presence of risk
- Monte Carlo is flexible and powerful framework for solving complex real options that arise in forest management
- Outlook
 - More realistic price models
 - Additional sources of risk
 - Faster, more efficient computation